1st Hour
Tunnels
 • Immersed tunnels
 • Comparison Bored Tunnels (short)
 • Land tunnels

2nd Hour
Introduction in Shield tunnelling
 • Pipe jacking & tunnelling
 • Slurry & hydroshield
 • Slurry versus EPB
 • Principles of support pressure

Delft University of Technology, faculty of Civil Engineering
Ir. S. van der Woude
20 February 2009
Immersed tunnels

First immersed tunnel in the Netherlands; the Maas tunnel, 1942
IMMERSED TUNNELS IN EUROPE
Examples immersed tunnels in the Netherlands

Calland, Piet Hein and 2nd Benelux tunnel
Construction proces immersed tunnel

- Construction dock
- Tunnel elements (with temp. watertights bulkheads)
- Constructing the ramps with the transition structure
- Dredging the immersing trench
- Immersing
- Closure of the joints
- Founding and covering
Principle immersing

Phase 1
- closed tunnel
- waterway
- open exit
- construction dock with elements
- section A-A
- Building pit shore part

Phase 2
- connection trench
- still to be placed tunnel element
- section B-B
- immerse-trench

Situation 1
- temporary bulk head bracket
- ballast tank
- pontoon
- concrete tile

Situation 2
- pontoon
- bracket
- bottom submerge trench

Cross-section situation 2
- jacking pin
- ballast tank
- underwater pipe
- concrete tile
Construction dock
Water barrier
Transition structure
BULKHEAD – OUTSIDE VIEW

- Air-vent pipe
- Door
- Nose
- Ballast-water pipes
- Gina
Gina gasket
Coupling of the elements

- watertight bulkhead
- support ridge
- last placed element
- floor
- bottom immersing trench
- roof

20 February 2009
Closure joint

Detail final joint in the wall
1 = primary sealing, 2 = folded steel sheets, 3 = permanent sealing (rubber), 4 = steel support, 5 = fireproof cover, 6 = watertight cover, 7 = concrete protection
Cross section

- $F_{\text{upwards}} = A \times B \times \rho_w$
- $F_{\text{downwards}}$:
 - Concrete
 - Reinforcement
 - Ballast concrete
Design aspects immersed tunnel alignment

- Cross section
 - Horizontal and vertical clearance (dredged trench)
 - Force equilibrium

- Longitudinal section
 - Ramps
 - Joints
 - Transition structure
 - Horizontal and vertical curve radius
 - Cover
 - Maximum slopes
 - Water barrier
Design aspects Load cases

- **Permanent loads**
 - dead weight, water, earth pressure

- **Variable loads**
 - mobile loads due to transport, temperature

- **Accidental loads**
 - earthquake
 - explosion / fire
 - collision
 - falling and dragging anchors
 - stranding ships
Comparison bored/immersed tunnel

• Here we see the entrance of
 • Bored tunnel: The Botlek railway tunnel of the Betuwe route.
 • Immersed tunnel: The Botlektunnel Highway A15
Comparison bored/immersed tunnel
When to choose an immersed tunnel (with cut and cover ramps)

• **Primarily**
 - Crossing of rivers/canals

• **Advantages** compared with a bored tunnel
 - Shallower
 - Shorter ramps

• **Disadvantage** compared with a bored tunnel
 - Hindrance during construction caused by
 - Dredging,
 - Transport of elements, Immersing
 - Construction of the ramps are adjacent to immersed tunnel
 - Construction Dock
When to choose a bored tunnel (with launch and reception shaft)

• Primarily
 • Rivers Canals and any vulnerable object
 • Historic city centre (Amsterdam)
 • Residential areas (den Hague)
 • Infrastructure (also C&P)

• Disadvantage compared with an immersed tunnel
 • Deeper launching and reception shaft of TBM. Longer

• Advantages
 • Little hindrance during construction
 • Shafts can be located on optimal location.
Land Tunnels

- Cut and cover
 - Sheet piles or diaphragm walls
 - Excavation with struts or anchoring
 - Impermeable layer or dewatering or underwater concrete
 - Construction of the tunnel In situ or prefab.
- Top Down method
- Pneumatic caissons
Examples land tunnels in the Netherlands

HSL-zuid, Betuweroute tunnel Zevenaar and tunnel Giessen
Open building pit

De tekening geeft uitleg over de verschillende fases van de zogeheten ‘natte’ bouwmethod. Deze methode wordt (deels) toegespast vanaf Plein 1940-1945 tot aan de Thorbeckesingel in Schiedam.

1. Introductie bouwmethod.
2. Ontgraven tot de niete dieptepunt.
4. Doorgaan schoonmaken.
5. Houden van zilfo-ribbeklaag.
7. Verstrooien met beschermende milieubepaal.
10. Wassen van tunnelbovensteellen en tunneldeuren.
11. Tunnelbepaal.
12. Tunnelbepaal.
13. Tunnelbepaal.
Cut and Cover Top down method

Building from ground level:
A constructing diaphragm walls
B excavating and building roof structure

Building below the roof:
C excavating and building floor -1
D excavating and building floor -2
E excavating and building floor -3
Cut and Cover / Top Down method

- Tram tunnel The Hague
Cut and Cover Grout arch; Tram tunnel top down method

>>> lecture 9
Principle pneumatic caisson method

CAISSON METHODE

excavate

construction caisson

install equipment

immerse

remove equipment

finishing
Caisson method

• East line Metro Amsterdam
Prefab shell tunnel

- Metro Rotterdam
Bored Tunnels Introduction

Tunnel-construction under the St. Clair River more than 100 years ago.
Bored Tunnels in the Netherlands

Hubertustunnel, the Sophia tunnel, and the Botlekrail tunnel.
Constructing a tunnel with a TBM

Functions of a TBM:

• Controlled excavation of the ground.
• Support the ground/rock. (The shield)
• Construct the tunnel
• Facilitate the logistics (Transport of soil & tunnel elements & power, etc.).
Constructing a tunnel with a TBM

Pipejacking versus Tunnelling

Shield and tunnel pushed

- D = 0.8m to ca. 3m
- Limited length
- Lining = pipe
- No sharp curves!

Shield pushes against tunnel

- D > 3m
- Unlimited lengths
- Lining = segmented ring
- Sharp curves!
- 2 additional processes
Pipejacking

>>> lecture 12
Tunnelling

2 additional processes:

- Ring erection in the shield
- Shield tail injection (mortar injection)
Tail-sealing-mechanisms

- Wire brush fixing
- Wire brush
- Intermediate chambers filled with sealant
- Grout supply line
- Tailskin sealant supply line
- Concrete segments
- Water pressure and Earth Load
Curves in pipe-jacking
Curves in Tunnelling

\[\tan \varphi = \frac{B}{R} = \frac{K}{D} \]
Different shield types depending on the Geology and other boundary conditions

- **Open Face** *(atmospheric pressure)*
 - In Rock; **hard rock TBM** *(with grippers)*
 - In Soil conditions limited
 - only small diameter and above ground water

>>> lecture 12
L1*-Arbeitsbereich / Working area
Different shield types depending on the Geology and other boundary conditions

- **Closed Face** (support pressure)
 - In soft soil conditions and in mixed geology
 - Depending on soil conditions different types of support medium
 - Support with bore fluid (bentonite)
 - Slurry shield
 - Hydro shield
 - Support with excavated soil
 - Earth pressure balance shield (**EPB-shield**)
 - Support with Air (only special occasions)
TBM: cutting elements and obstacles
Selection criteria for type of TBM:

- Geological profile of the project.
- Groundwater pressures (support pressure is normative).
- Depth, horizontal- and vertical alignment of the tunnel.
- Surrounding area (settlements, ground-deformations).
- Logistic / available space.
Bentonite = Bore fluid (is the support medium)

Functions of the bore fluid

- Maintaining support pressure
 - Building a membrane and/or
 - Creating an invasion zone (plug the pores)
- Transport of the soil particles to the Separation plant
Slurry shield principle of support pressure
Slurry shield versus Hydro shield

Slurry shield
- Vulnerable for errors pumps
- More simple TBM
- Japan and pipe jacking

Versus

Hydro shield
- Air bubble levels out
- Accurate support pressure
- Europe
Principles of slurry shield and EPB
EPB shield

Transport of excavated ground

Screw jack

Work chamber

Cutter wheel
Earth Pressure Balance (Elastic soil mixture from excavation face)
Slurry

20 February 2009
Separation plant (cost factor)

Separation plant Groene Hart, 2500m³/hr supplied by MS in 1998
Slurry versus EPB

Slurry-shield versus EPB-shield
non cohesive versus cohesive

20 February 2009
EPB versus Slurry

<table>
<thead>
<tr>
<th>Körnungslinie</th>
<th>Schlämmkorn</th>
<th>Siebkorn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ton</td>
<td>fein, mittel, grob</td>
<td></td>
</tr>
<tr>
<td>Schluff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>fein, mittel, grob</td>
<td></td>
</tr>
<tr>
<td>Kies</td>
<td>fein, mittel, grob</td>
<td></td>
</tr>
</tbody>
</table>

Korn durchmesser d (mm)
Kornverteilungslinien verschiedener Lockerböden

Siebrückstand in Gew. %
- Orange: Hydro-Schild
- Grün: EPB-Schild
Support pressure EPB- versus Slurry

Safety against excavation face collapse:

\[P = 1,5 \times \sigma'_h + 1,05 \times \sigma_w \]
(all levels of cross section top and bottom)
The bottom is normative

Safety against blow out:

\[P_{\text{max}} = \sigma'_v / 1,1 \]
(for all levels)
the top is normative

>>> CT 5305 & CT 5330
Foundation Eng. and Underground Construction

>>> CT 5305 & CT 5330
Foundation Eng. and Underground Construction
Support pressure EPB- versus Slurry

Ideal situation for support pressure

“worst case” air support

Support with bore fluid

Support with earth paste EPB
Summary Slurry versus EPB

<table>
<thead>
<tr>
<th>Slurry shield</th>
<th>EPB-shield</th>
</tr>
</thead>
<tbody>
<tr>
<td>support with (bentonite) fluid</td>
<td>support with the excavated soil</td>
</tr>
<tr>
<td>minimum cover +/- 1 D in non-cohesive soil</td>
<td>minimum cover +/- 0.5 D in cohesive soil</td>
</tr>
<tr>
<td>extraction with pumps</td>
<td>extraction with screw conveyor and ?</td>
</tr>
<tr>
<td>Pressure can be adjusted accurately</td>
<td>pressure fluctuations</td>
</tr>
<tr>
<td>Separation plant</td>
<td>-</td>
</tr>
<tr>
<td>simple TBM</td>
<td>complex TBM (high torque, more wear, conveyors)</td>
</tr>
<tr>
<td>overall higher costs</td>
<td>overall lower costs</td>
</tr>
</tbody>
</table>
Extend the use of EPB in unfavourable geological conditions
Extend the use of EPB in unfavourable geological conditions
Botlek Tunnel EPB in sandy soil
Summary

• Immersed tunnels
• Building techniques for land tunnels.
• Functions of a TBM
• Pipe jacking versus tunneling
• Slurry versus Hydroshield
• Principle of support pressure
• Slurry versus EPB
• Extending the use of an EPB TBM

>>>>>chapter 7, 8, 9, 10 of the reader
CT 3300 in relation to other courses

- CT 3300 Use of underground space.
 - Broad introduction
 - “Inleiding ondergronds bouwen”
- CT 4780 Special Topics
 - New developments on UC
- CT 5305 Bored and immersed tunnels
 - In detail
- CT 5330 Foundation Eng. and Underground Construction
 - Amongst others Bored tunnels in detail
- CT 5740 Trenchless Technology
 - Pipeline construction techniques In detail
Tail-sealing-mechanisms (S1 seal)

- Rubber tail sealing mechanism
Principle of the drilling fluid

- Slurry support
- Compressed air and slurry support
- Compressed air support

Clogging of the pores
Air
Drilling fluid
Transport
“Filter-cake”
Penetration of the drilling fluid
Slurry shield

1. Cutting wheel
2. Air bubble
3. Bentonite suspension
4. Drive unit
5. Stone crusher
6. Push cylinder
7. Air lock
8. Steering cylinder - Shield tail
9. Erector
10. Segment conveyor
11. Slurry pump
12. Segment crane
13. Main electric panel
14. Cable reeling drum
15. Discharge line
16. Feed line
Segments tunnel lining

• Variation of the position of left and right segments change the direction of the tunnel
• Keystone closes the arch
Next year,

- boulder clay foto TBM delfzijl.
- Foto groene Hart
- Tunnel lining Engineering